Review p 38 MAPK , microglial signaling , and neuropathic pain

نویسنده

  • Marc R Suter
چکیده

Accumulating evidence over last several years indicates an important role of microglial cells in the pathogenesis of neuropathic pain. Signal transduction in microglia under chronic pain states has begun to be revealed. We will review the evidence that p38 MAPK is activated in spinal microglia after nerve injury and contributes importantly to neuropathic pain development and maintenance. We will discuss the upstream mechanisms causing p38 activation in spinal microglia after nerve injury. We will also discuss the downstream mechanisms by which p38 produces inflammatory mediators. Taken together, current data suggest that p38 plays a critical role in microglial signaling under neuropathic pain conditions and represents a valuable therapeutic target for neuropathic pain management. Background Injuries of the nervous system, including peripheral nervous system (PNS, e.g. peripheral nerves, dorsal root ganglia, and dorsal roots) and central nervous system (CNS, e.g. spinal cord and thalamus), often result in neuropathic pain. These injuries may result from diabetic neuropathy, viral infection, major surgeries (e.g. amputation, thoracotomy), spinal cord injury, and stroke [1-3]. Spontaneous pain, described as shooting, lancinating or burning pain, and mechanical allodynia (painful responses to normally innocuous tactile stimuli) are distinct symptoms of neuropathic pain, although neuropathic pain is also characterized by heat hyperalgesia, mechanical hyperalgesia, and cold allodynia. Neuropathic pain is a consequence of neural plasticity, developed both in the PNS (peripheral sensitization) and CNS (central sensitization). After nerve injury, neuropathic pain can arise from injury discharge at the site of axonal injury and ectopic/spontaneous activity in dorsal root ganglion (DRG) neurons [4-6]. Inflammatory mediators (e.g. cytokines) play a critical role in the generation of spontaneous activity and neuropathic pain. Peripheral nerve injury also induces marked phenotypic changes in DRG neurons [1,2]. While spontaneous activity from primary afferents drives central sensitization, central sensitization is responsible for persistent neuropathic pain. Central sensitization may also directly drive neuropathic pain in central neuropathic pain conditions caused by spinal cord injury or stroke. Central sensitization is induced by enhanced synaptic strength in the spinal cord and brain regions, due to an increase in excitatory synaptic transmission (e.g. AMPA and NMDA currents) or/and a reduction in inhibitory synaptic transmission (e.g. GABA currents) [7-9]. In addition to increased primary afferent input, enhanced descending facilitation also contributes Published: 1 November 2007 Molecular Pain 2007, 3:33 doi:10.1186/1744-8069-3-33 Received: 24 August 2007 Accepted: 1 November 2007 This article is available from: http://www.molecularpain.com/content/3/1/33 © 2007 Ji and Suter; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p38 MAPK, microglial signaling, and neuropathic pain

Accumulating evidence over last several years indicates an important role of microglial cells in the pathogenesis of neuropathic pain. Signal transduction in microglia under chronic pain states has begun to be revealed. We will review the evidence that p38 MAPK is activated in spinal microglia after nerve injury and contributes importantly to neuropathic pain development and maintenance. We wil...

متن کامل

Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain

The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with...

متن کامل

Age-Related Differences in Neuropathic Pain Behavior and Spinal Microglial Activity after L5 Spinal Nerve Ligation in Male Rats

Introduction: Several studies have reported the involvement of age-related changes in the development of neuropathic pain behaviors. However, limited data are available on the role of age in establishing and maintaining chronic neuropathic pain after peripheral nerve injury. Methods: In the present study, we examined age-related neuropathic behavior among rats in 4 age groups: p...

متن کامل

Analgesic effect of α-terpineol on neuropathic pain induced by chronic constriction injury in rat sciatic nerve: Involvement of spinal microglial cells and inflammatory cytokines

Objective(s): Neuropathic pain is a prevalent and debilitating neurological disorder. Ample evidence indicates that microglial cells and inflammatory cytokines are involved in the pathogenesis of neuropathic pain. Alpha-terpineol is a monoterpenoid alcohol with inhibitory effect on inflammatory cytokines. The main purpose of this study was to evaluate the effect of α-t...

متن کامل

Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015